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Application of an Artificial Neural Network as a Flight Test
Data Estimator
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During a flight test program, certain instrumented parameters are subject to degradation due to wear and
tear. Over the course of a flight test program, data from several flights will be lost due to undetected instru-
mentation faults. The application of artificial neural networks as flight test data estimators has been proposed
with the intention of reducing the aforementioned cost and wasted test flights. Several network topologies have
been studied. A simulation program has been used to identify the appropriate network topology for this task.
It is shown that a single network is not capable of predicting all of the correct values of the suspect parameters
based solely on the information received from the reliable instruments. However, it is shown that a collection
of smaller networks can succeed in this task, with each network predicting one suspect parameter. Limited
training and test results based on simulation-generated data are presented. Actual flight test data from a typical
business jet have been used to verify this concept and these results are presented as well. It is demonstrated
that in most cases these networks are capable of predicting the measured parameter outputs with sufficient
accuracy to enable identification of instrumentation system degradation.

Nomenclature
CL, CD, CY = lift, drag, and side force coefficients
Ch CM, Cn = rolling, pitching, and yawing moment

coefficients
c = mean aerodynamic chord
b = wingspan
f(x) = neural network activation function
/?, q, r = roll, pitch, and yaw rates
u, v, w = velocity components along each of the axes
jc, y, z = body axes
a = angle of attack
j8 = sideslip angle
8A, 8e, 8R = aileron, elevator, and rudder deflection

angles
= pitch angle
= bank angle0>

Subscripts
B
ELEV
GEAR
S
SPOIL
STAB
W
0

Superscript

— body axes
= due to elevator
= due to landing gear
= stability axes
= due to spoiler
= due to stabilizer
= due to wing
= aerodynamic quantity at zero angle of

attack

= nondimensional roll, pitch, and yaw rates
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I. Introduction

O VER the past decade the study and utilization of arti-
ficial neural networks (ANNs) has steadily expanded.

The range of practical applications for these networks is in-
dicated by the breadth of studies that have grown out of such
diverse backgrounds as biology, computer science, psychol-
ogy, and statistics. This growth is especially evident in the
aerospace community where a wide variety of applications
have been explored. ANNs have found applications in almost
every field of study. What follows is a brief survey primarily
concerned with studies conducted in the aerospace engineer-
ing field.

The identification and control of uncertain and/or highly
nonlinear plants has been an area of significant activity in the
study and application of ANNs. The problem of system iden-
tification, which is one of the issues central to this article, is
addressed in Refs. 1-3. Also, a range of applications in which
ANNs have been utilized in aerospace engineering have been
presented in Refs. 4-14. Many of the applications cited in
these references provided insight into the capabilities of ANNs
for identifying and controlling highly nonlinear systems with-
out the need for structured modeling of the system a priori.
In particular, Ref. 9 dealt with the automated screening of
propulsion data from the Space Shuttle main engine. The
problem addressed in this reference is similar to the research
in the current study. However, the unstructured nature of the
ANNs in modeling the aircraft aerodynamics identified in
Refs. 11 and 12 and the potential for their use in screening
flight data proposed in Ref. 14 provided the direct impetus
for conducting the current research project.

The current study expands the possible uses of ANNs into
another area of aerospace data analysis. Its purpose is to apply
ANNs to the health monitoring of a flight test instrumentation
package. During the course of a flight test program the flight
test instrumentation package must continually be monitored
to ensure the validity of the acquired data. As a flight program
progresses, certain instrumented parameters are subject to
degradation. Angle of attack and sideslip vanes are particu-
larly susceptible to damage. Many of these parameters cannot
be properly evaluated during a normal preflight by the in-
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strumentation engineer. They can only be checked during a
review of the flight data. The time spent assessing the instru-
mentation veracity may seem unproductive to the flight data
analyst, however, this is necessary if schedule delays and budget
overruns due to lost flight data are to be minimized. If an
automated system could be implemented to relieve the data
analyst of the majority of this tedium, then the likelihood of
detecting instrumentation degradation could be greatly in-
creased and the data analyst's time would become more pro-
ductive. Furthermore, use of such a system during an ongoing
flight test program would reduce the number of wasted flights
due to undetected instrumentation faults.

It is the objective of this research to study the feasibility of
developing such a system. The proposed system would im-
plement ANNs to map the trusted input parameters to the
parameters likely to degrade over the life of a flight program.

II. Method of Analysis
The intent of this research, as stated earlier, was to develop

ANNs for the identification of flight test instrumentation deg-
radation over the course of a test program. To this end, the
following strategy was outlined:

1) Train a series of candidate networks using I/O pairs
generated from the solution of the six-degree-of-freedom
equations of motion for a typical business jet. These data,
without noise or uncertainty, would be used to identify and
select the proper network topology.

2) Identify the most suitable network topology based on
overall performance and generalization capability. Global least-
squares-error minimization, generalization to inputs outside
the test range, and training time for the network would be
used as measures of network performance.

3) Train and test the selected network on flight test data
from a typical business jet. Also, test characterization and
generalization using data with noise and uncertainty in the
measurements.

Throughout this work, all flight data utilized were gener-
ated from steady maneuvers; specifically those typical of an
executive business jet. Therefore, extreme nonlinear maneu-
vers were not considered. The use of steady maneuvers was
intentional and was not a limitation of the current research.
Application of this approach to high-performance aircraft,
such as fighters, may require re-evaluation of the modeling
technique. The details of the current approach are described
in the following sections.

A. Neural Network
For a more comprehensive background involving ANN, the

reader is advised to consult Ref. 15. A very brief summary
of the material in that document is presented here.

Figure 1 shows the schematic of the ANNs used here. This
was a feed-forward network in which each layer was fully
connected to the following layer. This network utilized the
delta rule for back-propagation learning based on the global
network error. The initial problem formulation consisted of
a single network into which all trusted parameters were input
and from which all suspect parameters were output. The input

OUTPUT LAYER

HIDDEN LAYER 2

layer had 12 neurons, one for each of those flight test param-
eters that were reliable and least susceptible to degradation
over the duration of the flight test program. In terms of the
equations of motion, these 12 parameters could be used to
uniquely define the state of the aircraft over all the maneuvers
of interest. In the final network topology, the output layer of
each network consisted of one neuron for the suspect param-
eter. The input layer, employing linear activation functions,
was connected to two hidden layers, each using hyperbolic
tangent activation functions of the form

- (ex - e~x)l(ex
(1)

All neurons were connected with simple multiplicative weighted
connections. The output signal of the /th neuron was given
in terms of the sum of the signals from neurons j, weighted
by w,y, as

(2)

where ff is the activation function of neuron /. The neuron of
the output layer employed linear activation functions.

The network was trained by presenting it with a multitude
of training pairs. Each pair consisted of input data for the
network and correct network output. Correct output values
were collected either from simulation or from flight test data
validated by hand. The inputs to the network were the values
of those parameters that were considered least susceptible to
degradation during the flight test program. The network was
trained on pairs of inputs and correct outputs and a compar-
ison was made between the correct outputs and the network
outputs to determine the ability of the network to learn the
required mapping. Convergence was assumed when global
error between the network output and the correct output
decreased to a prescribed value. The network was then pre-
sented with inputs for those cases that were absent in the
training domain. Comparison of the network outputs with the
actual values was used to quantify generalization. Different
combinations of processing element architecture were then
tried in the two hidden layers to complete a series of network
topologies for testing.

B. Equations of Motion
In order to use ANNs in the flight data review process, a

unique I/O relationship had to be established between the
measured parameters that were considered less susceptible to
damage or degradation during a flight test program and those
that were likely to develop problems. Based on experience
with past flight test programs the data illustrated in Table 1
were chosen and divided into trusted vs suspect categories.

The first step in the process of developing the ANN was to
choose the network type and topology with which to solve
the aircraft system identification problem. To eliminate the

Table 1 Flight test data parameters

Trusted parameters Suspect parameters

Fig.
INPUT LAYER

Schematic of a fully connected feed-forward ANN.

Weight
e.g.
Airspeed
Altitude
Outside air temperature
Longitudinal acceleration
Lateral acceleration
Vertical acceleration
Pitch rate
Roll rate
Yaw rate
Turbine rpm - Nl

Angle of attack
Sideslip angle
Stabilizer incidence
Aileron deflection
Spoiler deflection
Rudder deflection
Pitch attitude
Bank angle



1090 McMILLEN, STECK, AND ROKHSAZ

added complexity of instrumentation noise and measurement
uncertainty during the selection of an appropriate network
topology, a set of "perfect" I/O pairs was required. A detailed
six-degree-of-freedom simulation was created in order to pro-
vide these perfect pairs. These equations formed the basis of
the simulation program written to generate the perfect train-
ing pairs used for ANN training and testing. All accelerations
were set to zero and the total mass and the location of the
aircraft e.g. were assumed to be fixed. This reduced the equa-
tions of motion to a set of algebraic expressions. The deri-
vation and simplification of the equations of motion were
verified with Refs. 16 and 17.

The aerodynamic model for this simulation was kept rel-
atively simple, though the simulation itself was capable of
handling any degree of nonlinearity. The aerodynamic coef-
ficients were modeled in the standard Taylor series format in
the stability axis system. The specific form of the aerodynamic
coefficients is presented in Eqs. (3-8):

CL = CLa + CLa + (Ck

i /° ^ i /"• ^+ C^.^ + CLai^a i i^a

v)(-cw/LH)

idC
D = CDQ + (77^) C2

L
\0^- L/

(3)

(4)

= CM() + CMa CM.q

+ CMaa + (CL cos a + CD sin a)(*cg -0.25)

+ (CL sin a - CD cos a)[(ZAC - Zc.g.)/cw] (5)

+ C,8SPOILSSPOIL

C,,f (6)

,+ i+ IL 1J aj

Cn5RSK + \Cnf + ̂  aj p

[ / \ ~\

C"> + IT*) a V + C»-(*c... -°'25> If) (?)
V da ) \ * \bw/

Cy = Cn + CYffi + CnR (^]
\ ^V /

' \ 1

fr (8)

In order to employ the previous coefficients into the equations
of motion, they were transformed first into the body axes by

{^1 f-cosa 0 sin a 1 rCz
Cy I = 0 1 0 Nc,
Cz] L-sino; 0 -cos aj {CL

~-IB 1 fcos a ^ — sin a~j r C/sM S [ = o i o NcM
;J [sin a 0 cos a J L Cns

(9)

(10)

The resulting body axis coefficients were then multiplied by
the appropriate characteristic areas, lengths, and dynamic
pressure and summed with thrust forces and moments. The
moments generated by spinning rotors were included in this
summation to accommodate those configurations with signif-
icant angular momentum from propellers or other rotating
devices.

C. Flight Test Data
The data for this research originated from an extensive

flight test program on a typical business jet. The complete
data, in final form presented to the ANNs, are listed in
Ref. 15.

Data files from 11 flights spread throughout the test pro-
gram were examined to obtain reliable data for steady level
flight trims, steady heading sideslips, and maneuvering sta-
bility flight conditions. These maneuvers were chosen as rep-
resentatives for instrumentation checkout during a test pro-
gram. Altogether, 82 training pairs and 21 test pairs were
identified as reliable data points for network training and
testing. Each test condition consisted of between 5-25 s of
steady-state conditions over which the data were averaged.
Initial aircraft weight and e.g. from a preflight weighing were
summed with fuel consumed, computed from fuel totalizer
readings, to arrive at a weight for each test point. Center of
gravity remained essentially constant for a given flight and,
therefore, was input from the flight data card. Spoiler de-
flection, aileron deflection, and gas turbine speed used here
were computed average values rather than individual left and
right inputs to the ANNs. To preclude possible corruption of
the data due to data processing errors, raw angle of attack
and sideslip angle from the boom-mounted vanes were used
with the ANNs rather than those computed using in-flight
calibrations and angular rate corrections. Similarly, outputs
from the three axis accelerometer components were utilized
without applying corrections for location relative to the e.g.
After successful training, all these corrections would ulti-
mately be implicitly included in the ANN weight matrices.

III. Results and Discussion
A. Simulation and Network Topology

The training data developed from the solution of the equa-
tions of motion were based on a typical set of test points likely
to be obtained from a flight program. This is as opposed to
designing a set of test conditions that would result in a uniform
distribution of I/O pairs over the flight domain. These solu-
tions covered a variety of steady-state maneuvers. A set of
150 flight conditions was chosen for training along with 28 for
testing the network. All cases were trimmed for steady-state
flight generating the pairs consisting of 12 inputs and 8 outputs
for training and testing the network.

Initially, it was intended to use one network, with 12 inputs
and all 8 suspect variables as the output. The results provided
by this network were promising, but mixed. The network
would learn the overall patterns of most parameters, but the
amount of deviation around the best fit of the data was un-
acceptable. In addition, some parameters such as sideslip an-
gle were not well characterized by the network. As a next
step, more training pairs were generated with which to provide
the sideslip angle relationship. The effect of introducing the
additional pairs was to weight the sideslip conditions more
heavily in the training data set. The network results after
training with the revised I/O pairs showed an improvement
in the characterization of sideslip angle, but the deviation on
all parameters was still unacceptable. Without better identi-
fication of the system the method would not provide a useful
tool for instrumentation monitoring.

The network topology was changed with the intent of
reducing both the complexity of the system identification
task and the training time involved in network development.
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Table 2 Relative performance for angle-of-attack networks

Network
topology
12-20-20-1
12-5-5-1
12-5-2-1
12-2-2-1

Training
cycles
36,000
29,800
45,200
10,900

Global
error

0.002
0.0002
0.005
0.0004

Internalization
capability
Excellent
Excellent
Good
Fair

Predictive
capability

Good
Good
Good
Fair
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Fig. 2 a) Training and b) test results from the network for angle of
attack (network topology 12-5-5-1).

The decision was made to utilize all 12 inputs and 2 hidden lay-
ers, as before, but to require only 1 output per network.
This implied using eight networks, but with fewer elements
per network than the original. Of the eight networks, the
parameter chosen for initial training was angle of attack. Four
networks were constructed for the angle-of-attack system
identification task. These networks possessed the topologies
12-20-20-1, 12-5-5-1, 12-2-2-1, and 12-2-5-1. Table 2 reflects
individual network performance in terms of cycles to achieve
a given global error. Internalization (how well it mapped the
training data set) and prediction (how well it used this map-
ping to estimate outputs for the test data set) capabilities are
also shown in this table. These results are based on the au-
thors' opinion after having carefully studied the networks'
performance. Figures 2a and 2b show the outcome of training
as well as the test of the 12-5-5-1 network for angle of attack.
Figure 2b clearly indicates the ability of the network to gen-
eralize the angle of attack for a wide range of maneuvers.

The ANN for identification of sideslip angle was created
and trained next. Two networks were chosen for training and
testing, a 12-20-20-1 network topology and a 12-5-5-1 network
topology. Both of the networks tested for sideslip angle rap-
idly converged to a small global error and then stabilized.
The 12-20-20-1 network trained to an error of 0.002 after
36,000 training passes and the 12-5-5-1 network to a global
error of 0.003 in 58,750 training cycles. The performance of
the two networks in characterizing the data was roughly equiv-
alent. Figures 3a and 3b show the training results as well as
the test results for this case. Again, these figures clearly show
the ability of the network to learn the behavior of the sideslip
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Fig. 3 a) Training and b) test results from the network for sideslip
angle (network topology 12-5-5-1).

angle. Based on the previous results, the network topology
of 12-5-5-1 was chosen for system identification on the re-
maining 6 output parameters (i.e., stabilizer incidence, aile-
ron deflection, spoiler deflection, rudder deflection, bank an-
gle, and pitch attitude). For detailed results, the reader is
encouraged to consult Ref. 15. In most cases the 12-5-5-1
topology provided adequate parameter identification utilizing
few training passes with a relatively small network. The ex-
ceptions were spoiler, rudder, and aileron deflections. A
probable cause of this was the weighting of training towards
the zero sideslip conditions where spoiler and rudder were
near neutral. Also, in the case of aileron deflection, the poor
performance of the network was explainable. The simulation
modeled a perfectly symmetric aircraft and the ailerons were
used only as trim devices on this aircraft. Therefore, ailerons
were almost never deflected away from neutral and the net-
work was not able to generate a relationship between aileron
deflection and the trusted input parameters.

Based on the previous results, the 12-5-5-1 topology was
deemed to possess acceptable learning and generalization ca-
pabilities for the next phase of this research. This phase in-
volved application of flight test data to test the method de-
veloped from simulation results.

B. Flight Test Results
The ANN topology chosen based on the simulation results

was now used for all flight test data. Table 3 summarizes the
results of training and testing. It should be stated at this point
that the ANNs for modeling of lateral-directional parameters
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Table 3 Results of flight test network training

Suspect
parameter
Angle of attack

Sideslip angle

Stabilizer incidence
Aileron deflection
Spoiler deflection

Rudder deflection

Pitch attitude
Bank angle

Training
cycles
66,000

99,000

42,200
56,000
74,500

34,800

51,300
46,000

Global
error

0.004

0.0075

0.01
0.02
0.0025

0.005

0.004
0.006

Capability to predict system degradation
Adequate for most problems, needs further re-

finement to predict subtle degradation
Additional training data in the moderate to high

sideslip range is required for conclusive results
Excellent for predicting any level of degradation
Capable of identifying any degree of degradation
Adequate to identify moderate level of degra-

dation; incapable of identifying subtle degra-
dation

Capable of predicting severe to moderate deg-
radation

Capable of predicting moderate degradation
Capable of predicting severe to moderate deg-

radation

0 182 4 6 8 10 12 14
ACTUAL AOA - DEG.

Fig. 4 Performance of the network for angle of attack from flight
test data (network topology 12-5-5-1).
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Fig. 6 Performance of the network for stabilizer incidence from flight
test data (network topology 12-5-5-1).
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Fig. 5 Performance of the network for sideslip angle from flight test
data (network topology 12-5-5-1).

suffered in varying degrees from the lack of sufficient training
data in the moderate to high range of sideslip angle. However,
the data used in this study were collected from a test program
that was completed some time ago and, therefore, the option
of acquiring more data was not available. A fundamental part
of this research was to use actual flight data in ANN devel-
opment. The quantity of data available from this test program
was not adequate to achieve desired network performance in
all cases. Therefore, it is concluded that for this system to be
implemented and function properly future flight programs
should include additional test points for network training.
Depending on the length of the flight test program, the ad-
ditional time spent collecting these data would be cost effec-
tive because 1) the number of flights repeated due to instru-
mentation failures would be reduced and 2) time spent reviewing
data would be cut significantly. The tradeoff between adding
test points for network training and saving repeat flights due
to failures would have to be assessed for each flight program.

- 4 - 3 - 2 - 1 0 1
ACTUAL AILERON - DEG.

Fig. 7 Performance of the network for aileron deflection angle from
flight test data (network topology 12-5-5-1).

Figures 4-11 graphically illustrate the performance achieved
by each network. In the interest of brevity, training results
have been omitted here. The interested reader is advised to
consult Ref. 15 for the training results. However, it should
be mentioned that due to noise and other uncertainties, there
existed some scatter in the training data from flight tests.
Therefore, some of the errors in the following results are
actually due to impurity of the training data.

1) Angle of attack: the results for angle of attack are shown
in Fig. 4. This figure indicates good agreement between the
actual flight test values and the network predicted values. All
but one of the test conditions were predicted within approx-
imately ±1 deg and most are within ±0.5 deg.

2) Sideslip angle: as indicated earlier, performance of the
network for sideslip angle was restricted by the limited num-
ber of training sets with significant sideslip angle. Neverthe-
less, this network also performed reasonably well as shown
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in Fig. 5. The training data was matched in this case to within
approximately ±0.5 deg. However, the test case indicated
moderate scatter of approximately ±1.0 deg, except at higher
slip angles.

3) Stabilizer incidence angle: one of the best set of results
was obtained in the case of stabilizer incidence angle. This
network was able to learn the training data set within ±0.25
deg and the test cases within approximately ±0.5 deg as in-
dicated in Fig. 6.

4) Aileron deflection angle: for this parameter there were
differences between the results obtained from the network
for simulation and that for flight test data. The performance
of the simulation network was poor, whereas the flight test
network showed that all of the training conditions and all but
three of the test conditions were identified within ±0.5 deg,
as shown in Fig. 7. This result was attributed to the slight
asymmetry present in a production aircraft, unlike the sim-
ulation model. This resulted in a small, but measurable aileron
deflection to trim the aircraft in roll, thereby providing the
training data with which to identify the system mapping.

5) Spoiler deflection angle: this network performed well
considering the limited number of available sideslip cases. The
training set was predicted within ±1.0 deg and the test set
within ±2.0 deg for all but one case, as shown in Fig. 8.

6) Rudder deflection angle: the network trained for the
identification of rudder deflection performed well on the training
data set with errors ranging from ± 0.5 to ±1.0 deg. However,
this network failed to properly predict the test conditions, as
indicated in Fig. 9. This was most likely due to the limited
number of training cases with significant rudder deflection
and the subsequent skewing of the network fit toward the
symmetric trim conditions.

7) Pitch attitude: the performance of the pitch attitude ANN
showed more scatter in the test cases than would be acceptable

Symbols - Test points

Line - Ideal data fit
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Fig. 8 Performance of the network for spoiler deflection angle from
flight test data (network topology 12-5-5-1).
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Fig. 10 Performance of the network for pitch attitude from flight
test data (network topology 12-5-5-1).
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flight test data (network topology 12-5-5-1).

Fig. 11 Performance of the network for bank angle from flight test
data (network topology 12-5-5-1).

for identification of subtle degradation in the instrumentation.
This is clearly indicated in Fig. 10. This behavior may be
attributed partly to the presence of the self-alignment mech-
anism in the pitch indicating gyroscope. This shortcoming of
this type of gyroscope is well known, but may be acceptable
on certain test programs. The use of this mechanism in this
flight test program was not the preferred choice, however, it
was unavoidable.

8) Bank angle: bank angle was predicted with moderate
accuracy, but the ANN was again handicapped by the lack of
training data with significant sideslip angles. The training data
was predicted within ±2.0 deg. The test data shown in Fig.
11 indicates errors ranging from ±5.0 to ±7.0 deg. This is
adequate to detect significant degradation or failure of the
gyroscope, but not sufficient to act in the capacity of identi-
fying slow degradation.

IV. Conclusions
The potential for ANNs to identify instrumentation deg-

radation during a flight test program was demonstrated. A
summary of the findings from this research is listed next.

1) The original system identification task had to be broken
into smaller subtasks, from one network identifying all 8 pa-
rameters to eight networks each mapping one parameter. This
was required because the original network for the identifi-
cation of all suspect instrumentation parameters did not per-
form adequately. The result of this task subdivision was a
more accurate prediction capability of the resulting networks.
Because these networks were smaller, the number of training
cycles as well as the training time were reduced.

2) The resulting networks, trained with flight data, ade-
quately predicted suspect instrument parameter outputs in 6
out of 8 cases, the exceptions being rudder deflection angle
and bank angle. The network performance for predicting lat-
eral-directional output parameters was restricted by the avail-
ability of limited training data in the higher range of sideslip
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angle. This problem can be remedied by a collection of ad-
ditional test points in the course of an ongoing flight test
program.

3) These networks are practical because they provide a
general modeling tool that does not require special knowledge
of aircraft system identification schemes. The only require-
ment here is a minimum set of instrumentation inputs for
proper network training and operation.

4) The method suggested here can easily be implemented
in programmable hardware for use in real-time monitoring of
an aircraft instrumentation data package.

5) This scheme lends itself well to test programs of longer
duration where the flight time necessary to collect sufficient
data for network training is a relatively small part of the
overall program. In shorter flight test programs, the tradeoff
in cost between additional time taken for data collection and
that required for data analysis would have to be assessed.

6) Implementing a system using ANNs has some limitations.
The choice of network topology is still a matter of trial and
error. There are no formulas for making this choice. This
became evident by the fact that several network topologies
had to be tested in the simulation phase before arriving at a
suitable configuration.

The findings from this research can be developed further.
Additional work in the development of this system could in-
clude the following.

1) Determining the minimum number and optimum mixture
of training cases to arrive at a proper mix of flight test types.
This would assure adequate network training.

2) Experimenting with the minimum number of trusted
instrumentation parameters required for adequate network
performance.

3) Extending the method to monitor additional instru-
mented parameters such as engine interturbine temperature,
etc.

4) Examining the effects of losing one or more of the trusted
parameters; i.e., the possibility of the failure of one of the
trusted parameters remaining undetected and jeopardizing
the operation of the health monitoring system.

Furthermore, the only neural network architecture used in
this study was that of a multilayer perceptron. It is possible
that other paradigms such as radial basis function networks
or generalized regression neural networks may yield better
modeling for some of the suspect flight parameters. This would
be the next logical step toward developing this into a usable
flight test data system.
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